Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Composition dependence of the magnetic and electronic properties of $\mathbf{UPd}_{2-x}\mathbf{Sn}^{\ *}$

I. Maksimov¹, F.J. Litterst¹, S. Süllow¹, and J.A. Mydosh²

- ¹ Institut für Metallphysik und Nukleare Festkörperphysik, TU Braunschweig, Germany
- ² Kamerlingh Onnes Laboratory, Leiden University, Netherlands

We have investigated the electronic transport and magnetic properties of heavy-fermion $UPd_{2-x}Sn$ with $0 \le x \le 0.15$. Previously, it has been established that introducing Pd vacancies in UPd_2Sn drastically affects its physical and structural properties: while UPd_2Sn crystallizes in an orthorhombic Pnma lattice and shows a non-magnetic ground state, $UPd_{2-x}Sn$, x=0.15, with a cubic Fm3m structure is antiferromagnetically ordered. Here, we demonstrate that also the electronic transport properties of UPd_2Sn are strongly dependent on the Pd content: while for UPd_2Sn we observe an overall metallic heavy fermion resistivity with a positive temperature derivative $d\rho/dT$, $UPd_{1.85}Sn$ exhibits a negative $d\rho/dT$ up to room temperature. Size as temperature dependence of ρ and Hall effect data for $UPd_{1.85}Sn$ are inconsistent with a semiconducting or semimetallic ground state. In order to assess the relevance of crystallographic disorder we study in detail the composition dependence of the properties of $UPd_{2-x}Sn$. From our study we establish a phase diagram of the structural and ground state properties of $UPd_{2-x}Sn$ as function of x.

^{*}Supported by the Deutsche Forschungsgemeinschaft DFG under grant nr. SU 229/1-1